Coupled model of surface water flow, sediment transport and morphological evolution
نویسندگان
چکیده
This paper presents a mathematical model coupling water flow and sediment transport dynamics that enables calculating the changing surface morphology through time and space. The model is based on the shallow water equations for flow, conservation of sediment concentration, and empirical functions for bed friction, substrate erosion and deposition. The sediment transport model is a non-capacity formulation whereby erosion and deposition are treated independently and influence the sediment flux by exchanging mass across the bottom boundary of the flow. The resulting hyperbolic system is solved using a finite volume, Godunov-type method with a first-order approximate Riemann solver. The model can be applied both to short time scales, where the flow, sediment transport and morphological evolution are strongly coupled and the rate of bed evolution is comparable to the rate of flow evolution, or to relatively long time scales, where the time scale of bed evolution associated with erosion and/or deposition is slow relative to the response of the flow to the changing surface and, therefore, the classical quasi-steady approximation can be invoked. The model is verified by comparing computed results with documented solutions. The developed model can be used to investigate a variety of problems involving coupled flow and sediment transport including channel initiation and drainage basin evolution associated with overland flow and morphological changes induced by extreme events such as tsunami. r 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
Experimental Investigation of Flash Flood Resulting from Dam-Break on Bed Sediment Transport
Varied flows such as flooding resulting from dam break can happen due to earthquakes, seepage, bombing, overtopping, mistake in design and project performance as well as causing financial damages and human losses. Unsteady flow during flooding events has a high impact on flow field pattern, sediment motion, ecology and also, distribution of contamination in the river. In this study, the impact ...
متن کاملModelling offshore sand wave evolution
We present a two-dimensional vertical (2DV) flow and morphological numerical model describing the behaviour of offshore sand waves. The model contains the 2DV shallow water equations, with a free water surface and a general bed load formula. The water movement is coupled to the sediment transport equation by a seabed evolution equation. Using this model, we investigate the evolution of sand wav...
متن کاملPrediction of Sediment Transport Capacity in Rivers Using Quasi Two-Dimensional Mathematical Model
Sediment rating curve is an essential factor for many river engineering subjects and computations such as dredging, design of storage dams, river intakes design and sand mining management. Although, this curve is established using simultaneous measurement of flow and sediment transport discharges, however, due to lack of reliable data during flood events, it has limited reliability in flood con...
متن کاملUncertainties in Evaluation of the Sediment Transport Rates in Typical Coarse-Bed Rivers in Iran
Flow and sediment transport processes are different and more complex in coarse-bed rivers than in sand-bed rivers. The main goal of the present study is to evaluate different modes of sediment transport using different hydrometric and hydraulic methods, and to address the major uncertainties. Four river reaches were selected as representatives of coarse-bed rivers in the Northwest of Iran. A se...
متن کاملImplementation of a discontinuous Galerkin morphological model on two-dimensional unstructured meshes
The shallow water equations are used to model large-scale surface flow in the ocean, coastal rivers, estuaries, salt marshes, bays, and channels. They can describe tidal flows as well as storm surges associated with extreme storm events, such as hurricanes. The resulting currents can transport bed load and suspended sediment and result in morphological changes to the seabed. Modeling these proc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Geosciences
دوره 32 شماره
صفحات -
تاریخ انتشار 2006